Two Gilbert-Varshamov Type Existential Bounds for Asymmetric Quantum Error-Correcting Codes
نویسنده
چکیده
In this note we report two versions of Gilbert-Varshamov type existential bounds for asymmetric quantum error-correcting codes.
منابع مشابه
Subsystem Codes
We investigate various aspects of operator quantum error-correcting codes or, as we prefer to call them, subsystem codes. We give various methods to derive subsystem codes from classical codes. We give a proof for the existence of subsystem codes using a counting argument similar to the quantum Gilbert-Varshamov bound. We derive linear programming bounds and other upper bounds. We answer the qu...
متن کاملar X iv : q ua nt - p h / 06 10 15 3 v 1 18 O ct 2 00 6 Subsystem Codes
We investigate various aspects of operator quantum error-correcting codes or, as we prefer to call them, subsystem codes. We give various methods to derive subsystem codes from classical codes. We give a proof for the existence of subsystem codes using a counting argument similar to the quantum Gilbert-Varshamov bound. We derive linear programming bounds and other upper bounds. We answer the qu...
متن کاملConstructions and bounds on linear error-block codes
We obtain new bounds on the parameters and we give new constructions of linear error-block codes. We obtain a Gilbert–Varshamov type construction. Using our bounds and constructions we obtain some infinite families of optimal linear error-block codes over F2. We also study the asymptotic of linear error-block codes. We define the real valued function αq,m,a(δ), which is an analog of the importa...
متن کاملDualities and identities for entanglement-assisted quantum codes
The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is the code resulting from exchanging the original code’s information qubits for its ebits and vice versa. As an introduction to this notion, we show how entanglement-assisted repetition codes and entanglement-assisted accumulator codes are dual to each other, much like their classical counterparts, and we give an explic...
متن کاملImproved Gilbert-Varshamov bound for constrained systems
Nonconstructive existence results are obtained for block error-correcting codes whose codewords lie in a given constrained system. Each such system is defined as a set of words obtained by reading the labels of a finite directed labelled graph. For a prescribed constrained system and relative minimum distance δ, the new lower bounds on the rate of such codes improve on those derived recently by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information Processing
دوره 16 شماره
صفحات -
تاریخ انتشار 2017